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Abstract

In our study of the correlations between IceCube-detected neutrino events and γ-ray properties of blazars, we
recognize the inherent challenges posed by the limited detection of neutrinos. In this paper, we explore few-shot
learning to deal with the class imbalance and few-shot issues presented in the incremental version of the 12 yr
Fermi-LAT γ-ray source catalog (4FGL_ DR3). Specifically, we train a triplet network to transform the blazars
with neutrino emission (NBs) and nonblazar samples into an embedding space where their similarities can be
measured. With two-way three-shot learning, 199 out of 3708 blazars without neutrino emission (non-NBs) are
considered as the potential blazars emitting neutrinos (NB candidates, or NBCs for short), with a similarity score
against NBs exceeding 98%. Moreover, the Kolmogorov–Smirnov test supports our identification of NBCs.

Unified Astronomy Thesaurus concepts: Blazars (164)

Materials only available in the online version of record: machine-readable tables

1. Introduction

1.1. Neutrino Detection and Blazars

Observation of neutrinos from extraterrestrial sources used to
be limited to the Kamiokande II detector (K. Hirata et al. 1987)
observing the neutrinos produced by the Sun and by the famous
supernova 1987A, which emitted neutrinos with energy in the
tens of MeV. In 2013, the IceCube Neutrino Observatory
(hereafter IceCube; IceCube Collaboration 2005) detected 28
high-energy neutrinos between 30 TeV and 1.2 PeV. These
extraterrestrial neutrinos were observed between 2010 and
2012, with no clear patterns in time or space. Moreover, this
limited data makes conclusions unfirm (IceCube Collaboration
2013).

Further investigation was performed on six years worth of
IceCube data, and the results were reported in M. G. Aartsen
et al. (2016), which excluded that the detected neutrinos were
produced in the atmosphere. The authors found no significant
correlation between the directions of reconstructed neutrino
events and the Galactic plane, concluding that the dominant
fraction of the high-energy neutrino flux is isotropic.
Additionally, an analysis of the arrival directions of neutrinos
with reconstructed muon energies above 200 TeV found no
correlation with known γ-ray sources. However, this could also
be attributed to the limited data.

The discovery of high-energy neutrinos from extragalactic
sources has heralded a new epoch in the field of neutrino
astronomy (IceCube Collaboration 2013). It has been widely
accepted that high-energy neutrinos are generated by interact-
ing energetic cosmic rays with the surrounding matter or
photon fields within the source. These interactions give rise to

the creation of charged muons, which subsequently decay,
producing neutrinos. Within the realm of potential sources for
these high-energy neutrinos and cosmic rays, a range of
extragalactic entities, including starburst galaxies (R.-Y. Liu
et al. 2014; X.-C. Chang et al. 2015), tidal disruption events
(C. Lunardini & W. Winter 2017; N. Senno et al. 2017), and
active galactic nuclei (AGN; F. W. Stecker 2013; K. Murase
et al. 2014; P. Padovani et al. 2015), are commonly postulated.

1.2. Blazars in Neutrino Astronomy

Blazars are distinguished among AGN subclasses by their
unique characteristics (B. J. Wills et al. 1992; C. M. Urry &
P. Padovani 1995; J.-H. Fan 2002; M. Villata et al. 2006;
J.-H. Fan et al. 2014; H. B. Xiao et al. 2015; A. C. Gupta et al.
2016; H. Xiao et al. 2019; S. Abdollahi et al. 2020; J. H. Fan et al.
2021; J. Fan et al. 2023), including dominant radio and γ-ray
emissions, rapid variability across wavelengths, and high linear
polarization in radio and optical bands. Their nonthermal spectrum
extends from radio to X-ray bands, marked by strong radiative
luminosity. A classic categorization within blazars is based on the
equivalent width (EW) of their emission lines: flat spectrum radio
quasars (FSRQs) feature emission lines with EW 5 A , whereas
BL Lacertae objects (BL Lacs) typically lack emission lines or
present an EW 5 A (M. Stickel et al. 1991).
Blazars constitute the primary source of the extragalactic

diffuse γ-ray background (M. Ajello et al. 2015). If the emitted
γ-ray photons originate solely from hadron interactions, blazars
could also make a substantial contribution to the diffuse
neutrino background (A. Atoyan & C. D. Dermer 2001;
C. R. Zhu et al. 2013; P. Padovani et al. 2016; A. Palladino
et al. 2019). By reconstructing their arrival direction, muon
tracks help locate γ-ray point sources related to neutrinos. The
arrival directions of νμ (muon neutrinos) observed by IceCube
for eight years with energies higher than 200 TeV (C. Haack
et al. 2017) are almost isotropic, indicating that most high-
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energy neutrinos may come from extragalactic sources.
Notably, while hadron interactions that produce neutrinos also
emit γ photons, the IceCube data suggest a lack of significant
correlation between the arrival directions of neutrinos and the
known γ-ray point sources (C. Haack et al. 2017;
F. Halzen 2017). By comparing the arrival positions of νμ
with those associated with various classes of high-energy
objects, the contribution of each object type to the diffuse
neutrino background can be effectively constrained. Stacking
analyses reveal that γ-ray bursts, at most, contribute only 1% to
the neutrino background (M. G. Aartsen et al. 2017a), while
blazars contribute less than 30% (M. G. Aartsen et al. 2017b).

Later, IceCube announced a high-energy neutrino event
(IceCube-170922A) coincident in direction and time with a γ-
ray flare. The event was also observed by the Fermi Large Area
Telescope (hereafter Fermi-LAT; W. B. Atwood et al. 2009)
with blazar TXS 0506+056 (IceCube Collaboration et al.
2018a), albeit with a significance of <3σ. Between 2014
September and 2015 March, there was an excess of events
toward TXS 0506+056 above the atmospheric neutrino
background detected with a significance of 3.5σ. This suggests
that blazars with neutrino emission (NBs) are identifiable
(IceCube Collaboration et al. 2018b).

However, understanding the mechanisms behind neutrino
production in blazars is crucial. In the single-zone model,
electromagnetic cascade and neutrino production occur within
the same photon field. Studies of extremely high-energy track
alerts from IceCube suggest that this model predicts a
maximum annual detection rate of neutrinos of only 0.03
(IceCube Collaboration et al. 2018b; A. Keivani et al. 2018;
S. Gao et al. 2019). Such a low detection rate implies a
probability of less than 1% of detecting neutrinos from months-
long blazar flares with IceCube, posing a significant challenge
(K. Murase et al. 2018; H. Zhang et al. 2019; R. Xue et al.
2019a).

To address this challenge, a two-zone model has been
proposed. In this model, neutrino production requires an
external photon field provided by the broad-line region (BLR).
The radiation region is divided into two distinct zones: the
inner zone, located inside or close to the BLR, and the outer
zone, situated at a considerable distance from the BLR
(N. Sahakyan 2018; R.-Y. Liu et al. 2019). In the inner zone,
relativistic protons interact with BLR clouds, utilizing the
photons emitted by the BLR for both the pγ process and the
inverse Compton (IC) scattering process. The BLR clouds may
also induce the pp process within the jet. In contrast, the outer
zone faces challenges in obtaining an adequate external photon
field for the pγ process and a sufficient supply of target protons
for the pp process.

Compared to the single-zone model, the two-zone model
separates the radiation regions for the low-energy peak of
blazars and neutrino emission in the spectral energy distribu-
tion (SED). This allows the inner zone to yield an order of
magnitude higher neutrino flux, while the outer zone can meet
observational constraints on the X-ray flux (K. Murase et al.
2018; R. Xue et al. 2019a; H. Zhang et al. 2019).

During the regular and increased activity, blazar emissions
form a characteristic two-hump SED: the lower-energy bump is
attributed to the synchrotron emission, while the process
producing the higher-energy bump might be either one or a
mixture of two different classes of processes: the leptonic
model where the higher-energy bump is due to an IC process

(R. D. Blandford & A. Koenigl 1979; M. Sikora et al. 1994;
A. Sokolov & A. P. Marscher 2005; R. Xue et al. 2019b;
G. Wang et al. 2022a), and the hadronic model where the bump
can be interpreted as a secondary particle cascade initiated,
typically, by high-energy protons (A. Mücke & R. J. Prothe-
roe 2001; S. Dimitrakoudis et al. 2012; M. Cerruti et al. 2015;
S. Gao et al. 2019; R. Xue et al. 2021; Z.-R. Wang et al.
2022b). In addition, hadronic models favor the production in
the jet of neutrinos alongside high-energy protons and γ-rays
(e.g., K. Mannheim 1995; F. Halzen & E. Zas 1997; A. Mücke
et al. 2003; C. Guépin & K. Kotera 2017), so that a significant
correlation of an event like IceCube-170922A with the
direction of a blazar could tip the balance toward them.

1.3. Searching for Potential Neutrino-emitting Blazars with AI

In the meantime, some blazars have currently been identified
as potential blazars emitting neutrinos (NB candidates, or
NBCs for short), e.g., PKS 1424-41 (M. Kadler et al. 2016) and
GB6 J1040+0617 (S. Garrappa et al. 2019), which display an
increased γ-ray activity in temporal and spatial coincidence
with high-energy neutrino events. Several other blazars are also
listed as NBCs, like PKS 1502+106 in spatial coincidence with
the event IceCube-190730A (S. Garrappa et al. 2022) and
NVSS J065844+063711 with the alert IceCube-201114A
(S. Garrappa et al. 2021; R. de Menezes et al. 2022). Moreover,
A. Galván et al. (2022) reported 23 NBCs by using a spatial
correlation of angular distance between the high-energy
neutrino events detected by IceCube and the γ-ray blazars
reported by Fermi-LAT.
However, current studies of NBs still need to answer if

blazars account for most of the high-energy neutrino diffuse
flux and what the lepton-to-hadron ratio in blazar jets is,
primarily because of the limited number of events. Under the
hypothesis that high-energy neutrinos are produced in the jets,
we expect to find more significant correlations between
neutrinos detected by IceCube and, for example, the Fermi-
LAT catalogs (3FGL, F. Acero et al. 2015; 4FGL, S. Abdollahi
et al. 2020), allowing us to increase the number of NBs and
corroborate the hadronic scenario.
In recent years, artificial intelligence methods have been

employed in many fields of astronomy (G. Chiaro et al. 2016;
S.-J. Kang et al. 2019; H. B. Xiao et al. 2020). G. Chiaro et al.
(2016) utilized blazar flaring patterns and designed an artificial
neural network (ANN) to identify blazar candidates of
uncertain types (BCUs) in 3FGL. H. B. Xiao et al. (2020)
employed ensemble machine learning (ML) methods to
identify AGNs among 3FGL unassociated sources and BCUs.
More recently, J. T. Zhu et al. (2023) proposed a supervised
ML method to sift TeV γ-ray candidates and provide a sample
for ground-based Cherenkov telescopes. H. Cao et al. (2024)
performed an in-depth analysis of the physical attributes of the
sources and completed the categorization of the incremental
version of the 12 yr Fermi-LAT γ-ray source catalog
(4FGL_DR3) based on fractal dimension theory and wavelet
transform.
In this work, we explore the few-shot learning (FSL) based

on the ANN to search for the NBCs from the blazars without
neutrino emission (non-NBs) of 4FGL_DR3. The paper is
arranged as follows: In Section 2, we introduce the ANN and
present the class imbalance and few-shot problems of
4FGL_DR3. The introduction to FSL and our method are
detailed in Section 3. The analysis results are reported in
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Section 4. Furthermore, the statistical characteristics of the
found NBCs are analyzed in Section 5. Finally, the paper
concludes in Section 6.

2. Background

2.1. Artificial Neural Networks

In ML, the term a sample (or a data point) is commonly
utilized to denote an instance that contains multiple features.
Let x DÎ  denote a sample with D features, which typically
include the source’s physical attributes in astronomical data
processing, such as redshift and flux density. The ground-truth
label y Î denotes the category to which the source belongs,
where ∣ ∣ N= is the cardinality of . For instance, in a binary
classification task, we have N= 2 where 1 indicates the
positive category, and 0 indicates the negative category. The
whole data set typically comprises a collection of features and
labels with M samples, i.e., {( )} x y,i i i

M
1= = .

ANNs, inspired by the biological neural networks in animal
brains (W. S. McCulloch & W. Pitts 1943), have achieved
breathtaking success in deep learning (DL). Comprising
multiple layers populated by artificial neurons or nodes, ANNs
adeptly facilitate complex data processing from the input layer
through many hidden layers to the output layer, thus enabling
intricate pattern recognition and predictive capabilities
(Y. Bengio 2009; Y. LeCun et al. 2015; J. Ahmad et al. 2019).

The preference for employing DL methodologies based on
ANNs over traditional ML techniques is substantiated by the
universal approximation theorem. This theorem ensures that
ANNs can approximate any continuous function, which gives
the network a strong learning capability to mine the crucial
information from the raw input data in complex tasks without
requiring manual feature extraction (K. Hornik et al. 1989).
Many achievements in real-life applications have demonstrated
that DL can extract more discriminate features from the original
data, thereby enhancing the effectiveness of ML (Y. Bengio
et al. 2013).

The operational essence of ANNs is encapsulated in two
fundamental processes: forward propagation and backward
propagation (I. Goodfellow et al. 2016). These processes
enable ANNs to learn from data dynamically and progressively
refine their predictive accuracy. The forward process com-
mences with the features of input samples. Each feature is
linked to a node in the input layer; subsequent processing
involves linear combinations of these features, adjusted by
weights and bias. If we denote al HlÎ  as the input data of
layer l, then the output data of layer l+ 1 can be expressed as

( ) ( )a a W b , 1l l l l1 d= ++

where Wl H Hl l 1Î ´ + and bl Î  are the weights and bias of the
hidden layer l+ 1, respectively, and Hl is the number of nodes of
layer l. After the linear projection, an activation function δ( · )
acts as a nonlinear transform for the final output. This
transformation facilitates the advancement of data through the
network until the output layer ultimately yields a prediction. In
particular, al= x for the input layer l= 0.

In summary, we can obtain the output of an ANN model for an
input sample: ˆ ( ) ( ( ( ) ) ) x xW b W by F 0 0 1 1d d d= = + +q ,
after data forwarding through multiple layers. The ANN can be
seen as a nested nonlinear function that maps the input data to an
embedding space, with learnable parameters θ (i.e., weights and
bias): ˆF x y: ,D Eq   . E is the number of nodes of the

output layer. Thus, here we define a E-dimensional embedding
space.
Following this, the backward propagation phase targets

network optimization by evaluating the loss value
( ˆ) xG y,= , a measure of the discrepancy between the

predicted outputs and the ground-truth labels. G( · ) is a
predefined loss function that guides the adjustment of weights
and bias to minimize  through a process known as gradient
descent. This iterative adjustment, governed by the learning
rate, substantially enhances the network’s ability to extract
features from the training data, thereby improving its predictive
performance. The backward propagation, seen as an optim-
ization process, can be expressed as

( ( )) ( )x xG Farg min , , 2
i

M

i i
1

åQ =
q

q
=

where xi is the ith sample of the data set  containing M
samples, and Fθ is the mapping function of ANN model. After
the training process finished, we obtained a converged ANN
model with optimal parameters Θ.
Typically, the data set {( )} x y,i i i

M
1= = is divided into a

training set {( )} x y,t i i i
T

1= = and a validation set
{( )} x y,v i i i

V
1= = . The former leads the model to learn features

from data, while the latter is often used to monitor the
troublesome overfitting phenomenon during training. Over-
fitting means the ANN model excessively learns the details
instead of general patterns from the training data while
generalizing poorly to the validation data. In this paper, the
 was randomly partitioned into t and v 20 times. The
model demonstrating the lowest loss on the validation set was
selected as the optimal model. Dropout, which randomly omits
a subset of nodes during training, is one of the most widely
used techniques to alleviate overfitting and enhance the
generalization ability of models (N. Srivastava et al. 2014).
Most ANN-based classifiers presuppose a balanced distribu-

tion of classes within the data set (J. Ortigosa-Hernández et al.
2016). Nevertheless, this assumption does not always hold in
practical scenarios. The volume of one category within a data
set may be substantially smaller than others, which is referred
to as the class imbalance problem (M. Kubat et al. 1998; H. He
& X. Shen 2007; H. He & E. A. Garcia 2009; J. Ortigosa-He-
rnández et al. 2017). Many pieces of research have established
that the class imbalance problem skews the model toward the
majority class, degrading the performance of traditional DL
methods (N. Japkowicz & S. Stephen 2002; C. Drummond &
R. C. Holte 2005; M. A. Mazurowski et al. 2008; M. Buda
et al. 2018). Besides, another problem exists in our data set,
i.e., there are few samples in each class, which will be detailed
in the next section.

2.2. Samples of 4FGL_DR3

The Fermi-LAT Collaboration has recently released
4FGL_DR3 (S. Abdollahi et al. 2022), which comprises 6659
γ-ray sources and represents a comprehensive data set of high-
energy astrophysical objects. This data set can be divided into
subsets based on whether the sources are categorized into
blazar samples (or blazars) and nonblazar samples (or
nonblazars). As discussed in Section 1, in this work, we divide
blazars into two subsets: NBs and non-NBs.
It is noteworthy that there are some unassociated and

unknown sources among the nonblazars. The latter consists of
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γ-ray sources located at Galactic latitudes ∣ ∣b  10° and are
solely associated through the likelihood-ratio method with
large radio and X-ray surveys. Given their ambiguous
classifications, these sources do not fulfill the standard
requirements for supervised learning data sets containing
clearly labeled categories. Thus, we omitted these two subsets
from further consideration for this discussion when referring to
nonblazars (henceforth known as “others”). The division for
NBs, non-NBs, nonblazars, and others are shown in the top
panel of Figure 1. More details are given as follows.

Blazars. The 4FGL_DR3 presents a comprehensive compila-
tion of 3743 blazars (hereafter 4FGL_DR3 blazars, S. Abdoll-
ahi et al. 2022), including 794 FSRQs, 1456 BL Lacs, and 1493
BCUs. The catalog provides essential astrophysical information
for each source, enabling further investigations into the
properties and energetics of these high-energy γ-ray emitters.
This release represents a rich inventory of our expectations of
the NBCs in the blazar population.
Nonblazars. After excluding 3743 blazars, 2916 sources
remain in 4FGL_DR3. Subsequently, 2157 unassociated
sources and 134 sources with unknown classifications (i.e.,
other sources) are removed, resulting in 625 nonblazars with 20

definitive classes: nine nonblazar active galaxies (nonblazar
AGNs), seven binaries, five compact steep-spectrum sources,
six normal galaxies, one galactic center, 35 globular clusters, 11
high-mass binaries, eight low-mass binaries, 155 millisecond
pulsars identified by pulsations, eight narrow-line Seyfert 1s,
four novae, 137 young pulsars identified by pulsations, 20
pulsar wind nebulae, 45 radio galaxies, eight starburst galaxies,
two Seyfert galaxies, five star-forming regions, 43 supernova
remnants, 114 supernova remnant/pulsar wind nebulae, and
two steep-spectrum radio quasars.
NBs and non-NBs. Numerous investigations have been
dedicated to identifying blazar counterparts of neutrinos,
extensively leveraging the blazar catalogs obtained by Fermi-
LAT (D. Gasparrini et al. 2012; P. L. Nolan et al. 2012;
M. Ajello et al. 2017; B. Lott et al. 2020; M. Ajello et al. 2020;
S. Abdollahi et al. 2020, 2022). We curate a compilation of
eight works (e.g., M. Kadler et al. 2016; S. Garrappa et al.
2019, 2021; A. Galván et al. 2022; N.-H. Liao et al. 2022; R. de
Menezes et al. 2022; R.-L. Li et al. 2022; S. Garrappa et al.
2022) derived from the research mentioned above regarding the
blazar counterparts of neutrinos. These works present a
comprehensive analysis of 35 blazars reported in 4FGL_DR3,

Figure 1. The top panel shows the samples of 4FGL_DR3: 35 NBs, 3708 non-NBs, 625 nonblazars, and 2291 other sources. The bottom panel shows the 35 NBs and
625 nonblazars divided into four data sets: the training set consisting of 304–412 sources for pretraining, the validation set consisting of 98 sources for monitoring
performance during training, the support set consisting of 18–126 sources for providing embedding templates, and the query set consisting of 132 sources for
determining the K value in our two-way K-shot task.
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showcasing a notable temporal and spatial correlation with
neutrino emissions. In this paper, these 35 blazars are taken as
NBs, while the remaining 3708 blazars that are not certified as
NBs are recorded as non-NBs. The basic information of the 35
NBs is listed in Table 1, where column (1) gives the NB names
in 4FGL_DR3, column (2) is the SED class in 4FGL_DR3,
column (3) shows the classification results of BCUs according
to J.-H. Fan et al. (2022), and column (4) lists the references.

As described, we deal with 35 NBs, 625 nonblazars, and
3708 non-NBs in this work. This data set suffers from a class
imbalance problem since there is a significant disparity in the
proportion, namely, NBs:nonblazars:non-NBs ≈1:18:106. In
addition, there are few samples in each class, especially the
NBs, which we call the “few-shot” problem. In this case,
learning the crucial features from this limited data is
challenging with traditional DL methods.

2.3. Class Imbalance Solutions

The solutions to reducing class imbalance problems have
been developed through much work (G. M. Weiss 2004, 2005),
and can be roughly categorized into two levels. Data-level

methods, also known as resampling methods, aim to refine the
training data so that standard learning algorithms can be
effectively applied. These methods include undersampling the
majority class and oversampling the minority class. Techniques
such as NearMiss, edited nearest neighbors, and Tomeklink are
examples of undersampling, whereas SMOTE, ADASYN,
and Borderline-SMOTE represent oversampling methods
(D. L. Wilson 1972; I. Tomek 1976; N. V. Chawla et al.
2002; J. Zhang & I. Mani 2003; H. Han et al. 2005; H. He et al.
2008). After resampling, the volumes of different classes
become comparable for DL methods.
Moreover, data augmentation and generative techniques also

play an important role. These include adding random noise to
original data and generating synthetic samples through models
like variational autoencoding networks and generative adver-
sarial networks (I. Goodfellow et al. 2014; L. Pinhero Cinelli
et al. 2021). In addition, G. Batista et al. (2004) utilized a
hybrid method to combine oversampling and undersampling
for better performance. However, these generative techniques
require the model to learn the crucial features of the original
data and generate samples with a distribution that is as close to
the original data as possible. Therefore, generating a high-

Table 1
The 35 NBs in 4FGL_DR3

4FGL Name Class in 4FGL_DR3 Class in J.-H. Fan (2022) Reference
(1) (2) (3) (4)

4FGL J0006.4+0135 BLL R.-L. Li et al. (2022)
4FGL J0118.7-0848 BCU FSRQ R.-L. Li et al. (2022)
4FGL J0148.6+0127 BLL A. Galván et al. (2022)
4FGL J0206.4-1151 FSRQ S. Garrappa et al. (2022)
4FGL J0244.7+1316 BCU FSRQ A. Galván et al. (2022)
4FGL J0258.1+2030 BLL A. Galván et al. (2022)
4FGL J0420.3-3745 BCU BLL A. Galván et al. (2022)
4FGL J0428.6-3756 BLL A. Galván et al. (2022)
4FGL J0509.4+0542 BLL A. Galván et al. (2022)
4FGL J0525.6-2008 BLL A. Galván et al. (2022)
4FGL J0609.5+1402 BCU FSRQ A. Galván et al. (2022)
4FGL J0649.5-3139 BLL A. Galván et al. (2022)
4FGL J0658.6+0636 BCU BLL S. Garrappa et al. (2021), A. Galván et al. (2022), R. de Menezes et al. (2022)
4FGL J0725.8-0054 BCU BLL A. Galván et al. (2022)
4FGL J0738.1+1742 BLL S. Garrappa et al. (2021)
4FGL J0946.2+0104 BLL S. Garrappa et al. (2022)
4FGL J1003.4+0205 BCU BLL S. Garrappa et al. (2022)
4FGL J1039.6+0535 BCU BLL A. Galván et al. (2022)
4FGL J1040.5+0617 BLL S. Garrappa et al. (2019), A. Galván et al. (2022)
4FGL J1043.6+0654 BLL A. Galván et al. (2022)
4FGL J1210.3+3928 BLL R.-L. Li et al. (2022)
4FGL J1220.1+3432 BLL A. Galván et al. (2022)
4FGL J1231.5+1421 BLL A. Galván et al. (2022)
4FGL J1342.7+0505 BLL S. Garrappa et al. (2022)
4FGL J1359.1-1152 BCU BLL A. Galván et al. (2022)
4FGL J1427.0+2348 BLL R.-L. Li et al. (2022)
4FGL J1427.9-4206 FSRQ M. Kadler et al. (2016)
4FGL J1504.4+1029 FSRQ S. Garrappa et al. (2022)
4FGL J1505.0-3433 BLL A. Galván et al. (2022)
4FGL J1543.0+6130 BLL R.-L. Li et al. (2022)
4FGL J1744.9-1727 BCU BLL A. Galván et al. (2022)
4FGL J1751.6-1750 BCU BLL A. Galván et al. (2022)
4FGL J1808.8+3522 BLL A. Galván et al. (2022)
4FGL J2113.9+1120 BCU FSRQ N.-H. Liao et al. (2022)
4FGL J2227.9+0036 BLL A. Galván et al. (2022)

(This table is available in machine-readable form in the online article.)
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quality sample from a data set containing few samples per class
remains challenging.

As the second type of method to alleviate class imbalance,
the algorithm-level methods involve adapting existing DL
algorithms to be sensitive to class proportions. Cost-sensitive
learning, which assigns higher misclassification costs to the
minority class, exemplifies this approach (Y. Freund &
R. E. Schapire 1997; C. Elkan 2001). Prioritizing the minority
class during training helps alleviate the inherent bias toward the
majority class. Additionally, there has been investigative work
into how ANNs address the class imbalance issue, including
the development of novel loss functions specifically tailored for
the training of ANNs (S. Wang et al. 2016), as well as a two-
phase training method for convolutional neural networks that
initially trains on a class-balanced data set followed by fine-
tuning of the output layer (M. Havaei et al. 2017).

3. Methodology

3.1. Few-shot Learning

This paper investigates the FSL method for class imbalance
and few-shot problems. FSL represents a significant paradigm
shift within the field of DL, specifically addressing the
challenge of deriving meaningful inferences from a limited
data set size. Contrary to the traditional DL methods that
leverage abundant data to minimize generalization errors and
achieve superior performance, FSL incorporates meta-learning
principles to optimize its learning strategy across diverse tasks,
thus acquiring a broadly applicable and generalized effective
strategy even in data-scarce environments.

In the related work, training, and validation sets defined in
DL are referred to as support and query sets respectively in
FSL, collectively called a few-shot episode (G. S. Dhillon et al.
2019). Let {( )} x y,s i i i

S
1= = and {( )} x y,q i i i

Q
1= = denote the

support and query sets, respectively, where yi fÎ for some
set of classes f . The number of ways, or classes, is ∣ ∣ Nf = .
The set { ∣ ( ) }x xy k y, ,i i i i s= Î is the support of class k and
its cardinality is s support shots. Similarly, the set
{ ∣ ( ) }x xy k y, ,i i i i q= Î is the query of class k and its
cardinality is q query shots. The numbers s and q are small
positive values, leading to the term “few-shot.”

The support set lays the foundation for the model’s learning,
enabling it to discern among the N classes from minimal data
exposure. This set is meticulously designed to impart the
necessary knowledge to the model with sparse data. Then, the
model’s generalization capability learned from this limited data
is evaluated using the query set. In this phase, the model is
believed to identify the unseen samples of the query set based
on the insights garnered from the support set. Each class in
both the support set and query set is represented by K samples,
resulting in the so-called “N-way K-shot” task. In this paper, we
ranged K from 1 to 7 to explore the effectiveness of FSL.

We follow a DL approach to do the FSL, where a specific
ANN architecture (called triplet network, see Section 3.2) is
constructed to transform input data into an embedding space
through multilayer nonlinear mappings (Y. LeCun et al. 2015;
J. Ahmad et al. 2019). Based on the analysis of the 4FGL_DR3
samples in Section 2.2, we prepared the data sets for three steps
in our FSL method. Specifically, in the first pretraining step, the
training and validation sets featured two classes (NBs and
nonblazar) used to pretrain and choose a best-performing ANN
model, respectively. Second, the support and query data sets

were transformed into the embedding space for determining a
specific K value in our N-way K-shot task under the F-score
metric. Finally, the degrees of similarity between the embed-
dings of non-NBs and NBs were computed to consider the
NBCs in the identification process. In these steps, the model
deals with two types of samples, i.e., NBs and nonblazar, or
non-NBs and NBs. Thus, our method is considering a two-way
K-shot task. These three steps are illustrated in the bottom
panel of Figure 2. In subsequent sections, we will detail each
processing stage, explaining the methods and techniques to
achieve these objectives.

3.2. Triplet Networks

A type of novel architecture named a Siamese network was
introduced by J. Bromley et al. (1993) to solve signature
verification problems. In recent years, it has evolved into a robust
framework for applications requiring an assessment of similarity
or relationship between input samples. These networks employ a
unique architecture of twin networks joined at their outputs. The
twin networks are identical, sharing the same parameters, ensuring
that two comparable input vectors yield similar output vectors.
Siamese networks are particularly effective when the samples are
limited or fine-grained differentiation is required.
The triplet network originates from Siamese networks.

However, it employs a triplet-based structure to learn
embeddings such that similar samples are placed closer in the
embedding space while dissimilar samples are placed further
apart. Instead of learning the discriminate features of data and
categorizing the input sample into a distinct class in traditional
ML or DL methods, triplet networks focus on learning
similarities or dissimilarities between pairs of inputs. This
characteristic is particularly crucial in scenarios where the
available training data is insufficient to train an ANN without
overfitting (D. Chicco 2021).8

The key of the triplet network is the triplet-loss function,
which was introduced to the FaceNet system for face
recognition, extending the concept of learning from compar-
isons by using triplets of samples (F. Schroff et al. 2015). A
triplet consists of an anchor sample, a positive sample (similar
to the anchor), and a negative sample (dissimilar from the
anchor), as shown in the top panel of Figure 2. Minimizing the
triplet loss means simultaneously bringing the anchor and
positive samples closer in the embedding space while pushing
the anchor and negative samples further apart.
The triplet loss is computed with Equation (3) (F. Schroff

et al. 2015). By feeding the samples into the triplet network, the
objective of the loss function is to train the model such that the
anchor xa is closer to the positive sample xp than the negative
sample xn in the embedding space. Fθ(·) is the triplet network
and m is the margin quantifying the distance between two
resulting clusters:

( ( ) ( )
( ) ( ) ) ( )

  

 

x x

x x

m F F

F F

max 0,

. 3

a p

a n

0 2
2

2
2

= + -

- -
q q
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Moreover, in the data analysis phase, we used a weighting
trick during training to further alleviate the class imbalance
problem. We added a weight wa> 1 to the anchor sample if it
is a positive sample (NB in our task), as formulated in
Equation (4). By adjusting this weighting factor, the model can

8 https://www.cs.utoronto.ca/~rsalakhu/papers/oneshot1.pdf
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be guided to focus more on reducing the distance to positive
samples.

˜ · ( )  w . 4a0 0=

3.3. Feature Engineering

Before dividing the samples into different data sets for our
method, the original samples of 4FGL_DR3 need to be
preprocessed, which is often called feature engineering
(G. Dong & H. Liu 2018) and involves four steps in our work:

1. Feature discretization. In 4FGL_DR3, the feature
nuFnu_Band for a given source is a tuple of eight values:
nuFnu_Band1 to nuFnu_Band8. To analyze it, we split
the data into eight separate features, corresponding
to eight SED bands: nuFnu_band1 (50–100MeV),
nuFnu_band2 (100–300MeV), nuFnu_band3 (300–
1000MeV), nuFnu_band4 (1–3 GeV), nuFnu_band5
(3–10 GeV), nuFnu_band6 (10–30 GeV), nuFnu_band7
(30–100 GeV), and nuFnu_band8 (100–1000 GeV).

2. Feature selection. First, the string features were not
considered. Simultaneously, we select only one from the
physic view when multiple features show strong correla-
tions. For example, we chose the latter from the
integrated photon flux (Flux_Band) and SED (nuFnu_-
Band) per energy interval in 4FGL_DR3. Moreover,
although 4FGL_DR3 provides three distinct spectral
types, i.e., PowerLaw, LogParabola, and PLSuperExp-
Cutoff (see details in Section 3.4 of S. Abdollahi et al.
2022), it is more appropriate to use LogParabola to
describe the large sample of blazars in Fermi-LAT, since
it is a good description for many γ-ray blazar spectra. So,
we standardized the spectral type as LogParabola for all
samples. In the end, we selected 16 features for our data
analysis phase, as listed in Table 2. Columns (1) and (2)

denote the names and units of the features in 4FGL_DR3,
respectively; column (3) provides the descriptions.

3. Feature cleaning. Some samples may have missing
values where we filled in the mean value. For instance,
if a BL Lac source misses redshift nuFnu_band8, we will
fill it in with the mean of other BL Lacs. Among the 16
selected features, three have missing values: each one of
the variability index (V ), fractional variability (VF), and
nuFnu Band8 ( Flog 8) has one missing value. Therefore,
replacing so few missing values with the mean of other
available data is unlikely to significantly impact the data
distribution or introduce bias. This approach allows us to
utilize other sources’ features while maintaining the
samples’ integrity.

4. Feature normalization. We standardized all features by
removing the mean and scaling to unit variance, ensuring
the individual values would not dominate the data set.

3.4. Flowchart and Data Sets

As mentioned, our FSL method involves three steps. The
strategies of data set division, shown in the bottom panel of
Figure 1, are to be detailed according to these steps.

1. Pretraining. Pretraining is an essential step in FSL, where
a triplet network is initially trained on a more reasonable
and diverse data set. This phase helps the model learn
general features and representations, providing a solid
base for further utilization of more specific data. During
pretraining, the model undergoes multiple epochs with
techniques like dropout and learning-rate adjustments to
enhance robustness. The pretraining phase involves the
training set and validation set.

The training set is dedicated to leading the model to
learn general features and representations, as formulated

Figure 2. The top panel shows the ANN (triplet network) pretraining process with triplet loss. Random triplets are selected from the training set, and the ANN with the
smallest triplet loss on the validation set is chosen. The bottom panel demonstrates the use of the trained ANN to transform the support set and query set into the
embedding space, where their similarity score is calculated. In the two-way K-shot process, the softmax function is taken as J(·) to calculate the similarities, as shown
in Equation (6). While in the identification process, J(·) becomes cosine similarity for further analysis, as shown in Equation (7).
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in Equation (2). It usually contains most of the data to
ensure comprehensive learning. Due to the ranging K, the
training set comprised 55%–62% of the original NBs and
nonblazars, i.e., 16–22 NBs and 288–390 nonblazars,
which resulted in a training set with a total of 304–412
sources.

During pretraining, the validation set serves as a
checkpoint to evaluate the model’s performance, helping
to avoid critical overfitting. It remains separate from the
training set to ensure a reliable assessment of the model’s
generalization capability. The best-performing model FΘ,
obtaining a low loss value with Equation (4) on the
validation set, is chosen for the next steps. In our data
analysis phase, the validation set was constructed by
taking 15% of the original NBs and nonblazars, yielding
five NBs and 93 nonblazars.

2. Two-way K-shot. In this step, the best-forming triplet
network FΘ transforms the support set and query set into
the embedding space for similarity computing. In the
context of FSL, the support set plays a pivotal role. It
contains a limited number of samples for each class and is
used to derive the embedding templates. The query set
evaluates the network’s ability to identify unseen samples
based on the embedding templates.

As expressed in Section 3.1, for each class k of the
support set s, we calculate the mean vector of the
support points { ∣ ( ) }x xy k y, ,i i i i s= Î in the embedding
space:

( ) ( )
( ) 

c x
s

F
1

, 5
x

k
k y

i
,i i s

å=
Î

Q

where ck
EÎ  , E is the dimension of embedding space, as

defined in Section 2.1. sk is the support shots of class k.
Therefore, the embedding templates C E NÎ ´ can be
written as the concatenation of ck: { }C c c c, ,... N1 2= ,
where N is the number of classes. In our two-way K-shot
task, N= 2.

Then, an inner product between the embedding
templates C and the query set is performed in the
embedding space, producing a similarity distribution over
classes for a query sample xi, which can be expressed as

( ( ( )) · ( )) ( )p x CFSoftmax Norm Norm , 6i i= Q

where Norm(·) is an L2-normalization along the embedding
axis. (·)Softmax outputs a vector of probabilities that sum to
1, representing the likelihood of each class being the true
class. For an output node, the higher the probability is, the
more similarly the query sample belongs to the corresp-
onding support class. Therefore, the index with the highest
probability in the vector pi is taken as the predicted class of
the query sample xi. This operation is widely implemented
as an argmax function. This highest probability is used to
determine the optimal model during training.

To build the support set, 3%–20% of the original NBs
and nonblazars were selected, translating to one to seven
NBs and 625/35 × K nonblazars, which led to a set
containing 18–126 sources. The query set was formed by
taking 20% of the original NBs and nonblazars, resulting in
seven NBs and 125 nonblazars. In this step, the K value of
the two-way K-shot task was determined according to a
high F-score on the query set.

3. Identification. Based on the best-performing model FΘ

and the determined K value, we calculate the similarity
scores with Equation (7), which can be expressed as

( ) ·
( ( )) · ( )

( )s
x C

x C
F

FNorm Norm
, 7i

i

i
= Q

Q

while the support set and query set become 35 NBs and
3708 non-NBs respectively. The similarity scores lie
within the interval [−1, 1], where scores closer to −1
indicate higher similarity to non-NBs, and scores closer
to 1 indicate higher similarity to NBs. Finally, the non-
NBs with a similarity score higher than a threshold are
considered as NBCs.

Table 2
The 16 Selected Features in 4FGL_DR3

Feature Unit Description
(1) (2) (3)

Pivot Energy (EP) GeV Energy at which the error on differential flux is minimal
Energy Flux100 ( Flog ) erg cm−2 s−1 Energy flux from 100 MeV to 100 GeV obtained by spectral fitting
LP Flux Density ( flog ) cm−2 MeV−1 s−1 Differential flux at Pivot Energy in LogParabola fit
LP_Index (α2) Photon index at Pivot Energy when fitting with LogParabola
LP_beta (β) Curvature parameter when fitting with LogParabola
LP_Epeak (Epeak) Peak energy in νFν estimated from the LogParabola model
Variability Index (V ) The variability index is the sum of ( )2 log Likelihood´ differences between the flux fitted in each 1 yr interval and

the average flux over the entire catalog interval. A value greater than 24.72 across 12 intervals suggests there is
less than a 1% chance of the source being steady.

Frac. Variability (VF) It measures each source’s excess variance beyond statistical and systematic fluctuations, calculated as F

Fav

d . It typically

ranges between 50% and 90%. Most blazars exhibit fractional variability exceeding 10%
nuFnu Band1 ( Flog 1) erg cm−2 s−1 Spectral energy distribution in 50–100 MeV
nuFnu Band2 ( Flog 2) erg cm−2 s−1 Spectral energy distribution in 100–300 MeV
nuFnu Band3 ( Flog 3) erg cm−2 s−1 Spectral energy distribution in 300–1000 MeV
nuFnu Band4 ( Flog 4) erg cm−2 s−1 Spectral energy distribution in 1–3 GeV
nuFnu Band5 ( Flog 5) erg cm−2 s−1 Spectral energy distribution in 3–10 GeV
nuFnu Band6 ( Flog 6) erg cm−2 s−1 Spectral energy distribution in 10–30 GeV
nuFnu Band7 ( Flog 7) erg cm−2 s−1 Spectral energy distribution in 30–100 GeV
nuFnu Band8 ( Flog 8) erg cm−2 s−1 Spectral energy distribution in 100–1000 GeV
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3.5. Evaluation Metrics

Besides the metric of accuracy that is widely used in the
classification tasks, the precision, defined as TP

TP FP+
, and recall,

defined as TP

TP FN+
, provide a clearer insight into a model’s

performance. They are particularly crucial as they help
understand a model’s ability to predict positive cases and
identify all relevant instances correctly. The terms true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN) come from the definition of a more
fundamental tool, i.e., confusion matrix (J. Davis & M. Goad-
rich 2006; D. M. W. Powers 2011). To comprehensively
evaluate our model facing the class imbalance and few-shot
problems, we extend the F-score to harmonize the balance
between recall and precision metrics, resulting in the Fβ score,
where β indicates the importance of recall relative to precision.
The Fβ score is defined as

( ) · ·
( · )

( )F 1
precision recall

precision recall
82

2
b

b
= +

+
b

This score is instrumental in scenarios with class imbalance,
as traditional accuracy metrics may not adequately reflect the
performance due to their tendency to be inflated by the majority
class (H. He & E. A. Garcia 2009). In this paper, we
investigated β ranging from 1 to 5, where we assumed that
recall is more important than precision.

4. Data Analysis

4.1. Hyperparameters

Hyperparameters are external configurations used to manage
the training of triplet networks. They are manually configured
before training, which differs from the model parameters (i.e.,
weights and bias) that automatically update during training.
The details of the hyperparameters in our analysis are listed in
Table 3.

4.2. Results

The flowchart of our FSL method has three processes (see
details in Figure 2 and Section 3.4), and the corresponding
results are presented as follows.

1. Pretraining. As described in Section 3.4, we randomly
divided the 4FGL_DR3 data into training, validation,
support, and query sets 20 times for investigating the
uncertainty of the results. Therefore, 20 best-performing
models were selected across these 20 validation sets after
the pretraining process.

2. Two-way K-shot: Considering the β ranges from 1 to 5
and the K ranges from 1 to 7, the Fβ scores of the 20 best-
performing models were further evaluated independently
across 20 query sets and averaged across different β
values and K values. The results are compared
in Figure 3. We found that, when K= 3, the highest
Fβ score were achieved with F1= 0.62± 0.08,
F2= 0.74± 0.07, F3= 0.79± 0.09, F4= 0.81± 0.1, and
F5= 0.82± 0.1. Therefore, we fixed K= 3 for the
next step.

3. Identification. Finally, we took the 35 NBs as the support
set and the 3708 non-NBs as the query set. Under the
determined K= 3, their similarity scores were calculated
with Equation (7). Ultimately, 199 non-NBs were
identified as NBCs, with their similarity scores higher
than a threshold of 98%. The mean and standard
deviation of the similarity scores obtained by the 20

Table 3
Hyperparameters for Triplet Network Training

Hyperparameter Value Description
(1) (2) (3)

Layers and Nodes 16, 1024, 128, 128, 128,
128, 1024

Number of nodes in the input layer (16 nodes), five hidden layers, and output layer (1024-dimensional
embedding space).

Dropout Probability 0.7 Randomly omit nodes during training to reduce overfitting.
Activation Function δ Tanh Nonlinear function mapping inputs between -1 and 1, reducing the risk of vanishing gradients.
Margin m 15 Minimum distance between positive and negative samples in the triplet loss.
Loss Weighting wa 7 Weighting factor for positive samples, allowing cost-sensitive adjustments in the triplet loss.
Learning Rate 0.0005 Controls step size for updating neural network weights during backpropagation.
Optimizer Adam Adjust network weights to minimize the loss function during training. It controls the learning rate and

ensures efficient convergence.
Learning-rate Decay Step 30 Number of epochs after which the learning rate is decreased.
Learning-rate Decay Factor 0.95 The rate at which the learning rate is reduced over time.
Epochs 5000 Number of complete passes through the entire training set during the training process.
Batch Size 256 Number of samples used in each training iteration.

Figure 3. The Fβ scores for different K-shot configurations, with β ranging
from 1 to 5, represented by blue, orange, green, red, and purple lines,
respectively. The shaded areas around the lines indicate the standard deviation.
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best-performing models are shown in Table 4 and
Figure 4. Figure 4 demonstrates that as we move to the
right, the uncertainty decreases, indicating more confident
predictions. The rightmost 199 blazars, with the highest
similarity scores and smallest uncertainties, are identified
as NBCs.

5. Discussion

Our comprehensive study also sought to discern the
distributional differences in features across three distinct
nonoverlapping categories: 35 NBs, 3509 non-NBs (without
NBCs), and 199 NBCs. Building upon the foundational work
of J. H. Yang et al. (2022), which conducted SED fitting for
2709 blazars from the 4FGL_DR3 catalog spanning radio to
X-ray wavelengths, we incorporated crucial features such as the
peak frequency (log p

sn ) and peak luminosity ( Llog p
s) of the

synchrotron spectral component. Furthermore, in a subsequent
study, J. Yang et al. (2023) determined the peak frequency
(log p

ICn ) and peak luminosity ( Llog p
IC) of the IC component for

3743 blazars from the 4FGL_DR3. By meticulously cross-
matching the samples from J. H. Yang et al. (2022), S. Abdo-
llahi et al. (2022), and J. Yang et al. (2023), we curated an

enhanced sample of 2366 4FGL_DR3 blazars consisting of 35
NBs, 2244 non-NBs, and 87 NBCs, integrating four novel
features: log p

sn , Llog p
s, log p

ICn , and Llog p
IC, so we now

have 20 features. To this end, for the 20 features, we
employ a two-sample Kolmogorov–Smirnov test (KS test;
F. J. Massey 1951), setting the significance level at α= 0.05.
We also calculate the mean and standard deviation for each
sample. The p-values obtained from the KS test and the mean
and standard deviations of each feature are listed in Table 5,
where column (1) represents the names of the features, columns
(2)–(4) provide the p-values from both the KS tests, conducted
pairwise across the three samples, and column (5) delineates
the mean and stand deviation for each sample. The distribution
histograms of the 20 features for NBs, non-NBs, and NBCs are
also compared in Figure 5.
Among the features, several showed significant separation

between the pairs of categories (NBs, non-NBs, and NBCs), as
indicated by p� 0.05. Specifically, for the pair of NBs and
non-NBs, features such as Epeak, β, Flog 7, and log ICn exhibited
good separation. For the pair of NBs and NBCs, features
including EP, Flog , β, flog , V, VF , Flog 2, Flog 1, Flog 4, Flog 5,

Flog 6, log synn , and Llog IC
p showed significant separation. All

features of the pair of non-NBs and NBCs showed significant
differences with p� 0.001. Detailed results and p for each
feature are provided in Table 5.
The 199 identified NBCs exhibit particular properties in the

γ-ray band, which are potential indicators of neutrino emission.
For instance, NBCs have higher Epeak, indicating efficient
particle acceleration; they show greater β, suggesting complex
acceleration and cooling processes; they exhibit higher Flog 7,
which is linked to hadronic processes; and they have higher
log ICn , indicating more energetic electron populations. Addi-
tionally, a significant proportion of NBCs are found to be
FSRQs, suggesting a potential link between this blazar subtype
and neutrino emission. This finding aligns with previous
studies that suggest FSRQs are more likely to be associated
with high-energy neutrino events (P. Padovani et al. 2016;

Table 4
Mean and Standard Deviation of Similarity Scores for 199 NBCs

Source Mean of the Similarity Scores Standard Deviation
(1) (2) (3)

J0006.3-0620 0.984 0.016
J0013.4+0950 0.982 0.017
J0029.0-7044 0.982 0.017
J0031.3+0726 0.983 0.02
J0040.3+4050 0.982 0.016

(This table is available in its entirety in machine-readable form in the online
article.)

Figure 4. Probability of each blazar being an NBC. The x-axis represents all blazars, while the y-axis shows the probability of each blazar being an NB. Error bars
marked in blue indicate the uncertainty in the probability estimates. The red dashed line represents a similarity score of 0.98, marking the threshold for selecting
NBCs. The green dashed line indicates the starting point, with 199 sources to the right identified as NBCs.
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IceCube Collaboration et al. 2018a). Several features exhibit
significant differences between NBCs and other blazars,
highlighting their unique properties:

1. Epeak. The Epeak feature shows significant separation
between NBs and non-NBs (p= 0.012). High peak energies
suggest efficient particle acceleration mechanisms, poten-
tially driven by shock acceleration or magnetic reconnection
processes within the jet. These high-energy electrons are
also likely to produce high-energy neutrinos through
interactions with ambient photons or matter (K. Murase
et al. 2012; S. Gao et al. 2019). The significant difference in
Epeak between NBs and non-NBs highlights its potential as a
diagnostic tool for identifying neutrino-emitting blazars.

2. β. The spectral curvature parameter β also shows significant
differences between NBs and non-NBs (p= 0.044) and
between NBs and NBCs (p= 0.007). A higher curvature
can indicate more complex acceleration processes or
varying cooling mechanisms. Complex acceleration pro-
cesses, such as multiple shock fronts and magnetic
reconnection, lead to diverse particle energy distributions,
affecting the curvature of the spectrum. Different cooling
mechanisms, like synchrotron cooling and IC scattering, can
create variations in the energy distribution of electrons and
protons, which in turn influence neutrino production. The
significant difference in β suggests that blazars with higher
spectral curvature might be more efficient at producing
neutrinos (G. Ghisellini & F. Tavecchio 2010, M. Cerruti
et al. 2015).

3. Flog 7. The Flog 7 feature (p= 0.001) measures the
energy flux in the 30–100 GeV band. High flux values
in this band indicate significant high-energy γ-ray
emission, which can result from hadronic processes in
the jet. In such scenarios, proton–proton or proton–
photon interactions produce pions, which decay into γ-
rays and neutrinos. The significant difference in Flog 7
between NBs and non-NBs suggests that higher γ-ray

fluxes in this band are associated with neutrino emission
(P. Padovani et al. 2016; A. Palladino et al. 2019).

4. log ICn . The IC peak frequency log ICn also exhibits good
separation, with p= 0.004 for both NBs versus non-NBs
and NBs versus NBCs. This parameter indicates the peak
frequency of the IC emission, which is a result of high-
energy electrons scattering off low-energy photons. The
location of this peak can provide insights into the energy
distribution of electrons and the seed photon field. Higher
peak frequencies are indicative of more energetic electron
populations, which are also capable of producing high-
energy neutrinos through hadronic interactions. The
significant separation in log ICn underscores the role of
energetic electrons in both γ-ray and neutrino production
(M. Böttcher et al. 2013, Gao et al. 2019).

5. EP. The EP feature shows significant separation between
NBs and NBCs (p= 0.022). This indicates that the
energy at which the flux measurement is most precise
differs between neutrino-emitting and nonemitting bla-
zars, possibly reflecting differences in their underlying
particle acceleration mechanisms or environmental
conditions.

6. Flog . The energy flux ( Flog ) from 100MeV to 100GeV
shows significant separation between NBs and NBCs
(p= 0.003). Higher-energy fluxes can be indicative of more
intense high-energy processes within the blazar jets, which
could be associated with neutrino production. These
processes might involve more efficient particle acceleration
or a denser target photon field for hadronic interactions.

7. flog . The flog feature shows significant separation
between NBs and NBCs (p� 0.001). This suggests that
the intensity of γ-ray emission at the pivot energy is
different for neutrino-emitting blazars, possibly reflecting
variations in the energy distribution of accelerated particles.

8. V and VF. The variability index (V ) and fractional
variability (VF) both show significant separation between
NBs and NBCs, with p-values of 0.007 and 0.026,

Table 5
Statistical Results of the Kolmogorov–Smirnov Test

Features NBs versus Non-NBs NBs versus NBCs Non-NBs versus NBCs Mean ± std (NBs, Non-NBs, NBCs)
(1) (2) (3) (4) (5)

EP p = 0.094 p = 0.022 p � 0.001 2.8 ± 3.19, 2.08 ± 2.06, 2.77 ± 1.06
Flog p = 0.242 p = 0.003 p � 0.001 −11.16 ± 0.72, −11.31 ± 0.47, −11.48 ± 0.22
flog p = 0.295 p � 0.001 p � 0.001 −12.68 ± 1.22, −12.56 ± 0.99, −13.29 ± 0.44

α p = 0.049 p = 0.138 p � 0.001 2.04 ± 0.36, 2.15 ± 0.35, 1.98 ± 0.15
β p = 0.044 p = 0.007 p � 0.001 0.13 ± 0.16, 0.16 ± 0.17, 0.06 ± 0.05
Epeak p = 0.012 p = 0.685 p � 0.001 41.2 ± 87.4, 121.1 ± 2020.99, 21.75 ± 57.42
V p = 0.336 p = 0.007 p � 0.001 1079.7 ± 3477.07, 364.21 ± 2858.19, 24.48 ± 11.62
VF p = 0.451 p = 0.026 p � 0.001 0.37 ± 0.32, 0.48 ± 0.4, 0.4 ± 0.14

Flog 1 p = 0.19 p = 0.01 p = 0.027 −12.97 ± 2.13, −13.04 ± 1.82, −13.25 ± 1.48
Flog 2 p = 0.195 p = 0.001 p � 0.001 −12.08 ± 1.21, −12.55 ± 1.63, −12.42 ± 0.57
Flog 3 p = 0.381 p � 0.001 p � 0.001 −12.03 ± 0.96, −12.18 ± 0.94, −12.35 ± 0.26
Flog 4 p = 0.232 p = 0.001 p � 0.001 −11.97 ± 0.76, −12.15 ± 0.58, −12.33 ± 0.25
Flog 5 p = 0.183 p = 0.004 p = 0.002 −12.06 ± 0.79, −12.32 ± 0.66, −12.32 ± 0.26
Flog 6 p = 0.043 p = 0.05 p � 0.001 −12.45 ± 1.55, −12.96 ± 1.63, −12.34 ± 0.31
Flog 7 p = 0.001 p = 0.091 p � 0.001 −13.23 ± 2.2, −14.14 ± 2.39, −12.75 ± 1.13
Flog 8 p = 0.035 p = 0.209 p � 0.001 −15.09 ± 3.0, −15.89 ± 2.33, −14.66 ± 2.07

log synn p = 0.111 p = 0.001 p � 0.001 14.42 ± 0.99, 14.27 ± 1.26, 15.21 ± 1.04

Llog syn
p p = 0.22 p = 0.004 p � 0.001 45.48 ± 0.77, 45.39 ± 0.82, 44.86 ± 1.01

log ICn p = 0.004 p = 0.004 p � 0.001 22.98 ± 0.95, 22.71 ± 1.31, 23.57 ± 0.65
Llog IC

p p = 0.842 p � 0.001 p � 0.001 45.58 ± 1.11, 45.46 ± 1.11, 44.45 ± 0.98
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Figure 5. The distribution histograms for the 35 NBs are red, blue for the 2244 non-NBs, and green for the 87 NBCs.
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respectively. Variability in γ-ray emission is often linked
to changes in the jet environment or acceleration
processes, which could also influence neutrino

production. Higher variability might indicate more
dynamic conditions within the jet, leading to more
frequent or intense hadronic interactions.

Figure 5. (Continued.)
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9. Flog 2, Flog 1, Flog 4, Flog 5, Flog 6. Several energy fluxes
in different γ-ray bands show significant separation between
NBs and NBCs. Specifically, Flog 2 (100–300MeV,
p= 0.001), Flog 1 (50–100MeV, p= 0.010), Flog 4
(1–3 GeV, p= 0.001), Flog 5 (3–10 GeV, p= 0.004), and

Flog 6 (10–30GeV, p= 0.050). These differences in flux
across various energy bands suggest that neutrino-emitting
blazars have distinct γ-ray spectral properties, possibly due
to differences in their particle acceleration and emission
processes.

10. log synn . The synchrotron peak frequency (log synn ) shows
significant separation between NBs and NBCs
(p= 0.001). This parameter reflects the peak of the
synchrotron emission, which is related to the maximum
energy of electrons in the jet. Higher synchrotron peak
frequencies can indicate more efficient acceleration
processes, which might also enhance neutrino production.

11. Llog IC
p . The peak luminosity of the IC component

( Llog IC
p ) shows significant separation between NBs and

NBCs (p� 0.001). This suggests that neutrino-emitting
blazars tend to have different luminosities in the IC
component, which could be linked to differences in their
high-energy electron populations and the target photon
fields for IC scattering.

6. Conclusion

FSL is preferable when traditional DL methods struggle with
limited data from underrepresented and imbalanced classes.
With FSL, we constructed a triplet network to transform the

input data into an embedding space where the similarity can be
measured. Using a two-way three-shot approach, we achieved a
strong Fβ score on the query set. This performance could be
transferred to identify 199 NBCs out of 3708 non-NBs, each
with a similarity score exceeding 98%. Additionally, we found
substantial differences in the distributions of features among
NBs, non-NBs without NBCs, and NBCs. Specifically, the KS
test indicates significant differences across all features between
non-NBs and NBCs, further supporting the successful separa-
tion of NBCs from non-NBs.
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